MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Oceanic transports of heat and salt from a global model and data

Author(s)
Olson, Elise
Thumbnail
DownloadFull printable version (2.579Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences.
Advisor
Carl I. Wunsch.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A state estimate produced by ECCO-GODAE from a global one-degree model and data spanning the years 1992-2005 is analyzed in terms of transports of volume, temperature, and freshwater. The estimate is assessed to be sufficiently close to observations to merit analysis. The methods of analysis are similar to those of Stammer et al. (2003). The longer time period allows trends to be measured with greater confidence. Time mean flow characteristics demonstrate agreement with previous estimates. The strength of the ACC (146±5Sv) is larger than in the Stammer et al. (2003) state estimate, but is within the range of other estimates. A twelve-year decreasing trend is observed in the strength of the ACC of approximately 0.88Sv/year. The Indonesian throughflow transport of 1 l±2Sv is within the expected range. There is also a decreasing twelve year trend in the strength of the ITF of 0.065Sv/year. The ITF is stronger in boreal summer than boreal winter by approximately 4Sv. A strong annual cycle is present in the transport record on most sections, but higher frequency variability is also present. Most temperature transport variability results from velocity fluctuations, except in the Southern Ocean where temperature fluctuations are more important. Recommended further work includes a more detailed analysis of variability in this state estimate.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2006.
 
Includes bibliographical references (leaves 49-50).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/38560
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.