MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantitative analysis of apoptotic decisions in single cells and cell populations

Author(s)
Albeck, John G
Thumbnail
DownloadFull printable version (58.07Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Bioogy.
Advisor
Peter K. Sorger.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Apoptosis is a form of programmed cell death that is essential for the elimination of damaged or unneeded cells in multicellular organisms. Inactivation of apoptotic cell death is a necessary step in the development of cancer, while hypersensitivity to apoptosis is a factor in degenerative diseases. Many of the molecular components controlling apoptosis have been identified, including the central effectors of apoptosis, a family of proteases known as caspases that efficiently dismantle the cell when active. While many of the molecular details of apoptotic regulators are now understood, a major challenge is to integrate this information to understand quantitatively how sensitivity to apoptosis and the kinetics of death are determined, in both single cells and populations of cells. We have approached this problem with a combined experimental and computational approach. Using single-cell observations, genetic and pharmacological perturbations, and mechanistic mathematical modeling, we have dissected the mechanism by which cells make a binary decision between survival and apoptosis. We identified conditions under which the apoptotic decision system fails, allowing cells to survive with caspase-induced damage that may result in damage to the genome and oncogenesis.
 
(cont.) We further used live-cell imaging to identify and characterize a kinetic threshold at which slow and variable upstream signals are converted into rapid and discrete downstream caspase activation. Lastly, we examined the integration of multiple pro-and apoptotic signal transduction pathways by constructing a principal component-based model that linked apoptotic phenotypes to a compendium of signaling measurements. This approach enabled the identification of the molecular signals most important in determining the level of apoptosis across a population of cells. Together, our findings provide insight into the molecular and kinetic mechanisms by which cells integrate diverse molecular signals to make a discrete cell fate decision.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2007.
 
Includes bibliographical references.
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/38589
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Bioogy.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.