MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Novel methods in computational analysis and design of protein-protein interactions : applications to phosphoregulated interactions

Author(s)
Joughin, Brian Alan
Thumbnail
DownloadFull printable version (7.195Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Biology.
Advisor
Bruce Tidor and Michael B. Yaffe.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis presents a number of novel computational methods for the analysis and design of protein-protein complexes, and their application to the study of the interactions of phosphopeptides with phosphopeptide-binding domain interactions. A novel protein-protein interaction type, the action-at-a-distance interaction, is described in the complex of the TEM1 P-lactamase with the 3-lactamase inhibitor protein (BLIP). New action-at-a-distance interactions were designed on the surface of BLIP and computed to enhance the affinity of that complex. A new method is described for the characterization and prediction of protein ligand-binding sites. This method was used to analyze the phosphoresidue-contacting sites of known phosphopeptide-binding domains, and to predict the sites of phosphoresidue-contact on some protein domains for which the correct site was not known. The design of a library of variant WW domains that is predicted to be enriched in domains that might have specificity for "pS/pT-Q" peptide ligands is detailed. General methods for designing libraries of degenerate oligonucleotides for expressing protein libraries as accurately as possible are given, and applied to the described WW domain variant library.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2007.
 
Includes bibliographical references (p. 107-130).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/38630
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.