MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Therapeutics discovery via glycotechnology : the development of protein engineered enzymes for the study of galactosaminoglycan neuromedicine

Author(s)
Prabhakar, Vikas
Thumbnail
DownloadFull printable version (58.20Mb)
Alternative title
Development of protein engineered enzymes for the study of galactosaminoglycan neuromedicine
Other Contributors
Massachusetts Institute of Technology. Biological Engineering Division.
Advisor
Ram Sasisekharan.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/38917 http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Glycans are chemically heterogeneous macromolecules that have profound importance in a variety of biological processes. Located at the surfaces of cells, deposited in the extracellular matrix, or attached to soluble signaling agents, these molecules are characterized by a structural complexity that has thus far prevented their widespread exploitation in biomedicine. Insight into the fine structure and sequence of these complex biomolecules provides a novel niche for the development of therapeutic interventions. Such an understanding is rapidly accumulating via the molecular cloning, recombinant genetic expression, and protein purification of glycosaminoglycan-degrading enzymes. To this end, enzymes from the chondroitinase family of Pedobacter heparinus and Proteus vulgaris were developed. This library of enzymatic tools will reveal glycoconjugate structure-function motifs, allowed for by structural elucidation of glycan species using coupled bioinformatics/analytical chemistry techniques centered on mass spectrometry, nuclear magnetic resonance, and capillary electrophoresis.
 
(cont.) Biochemical characterization of these enzymes has allowed for the rational genetic manipulation of substrate recognition and binding site amino acid residues, producing site-directed protein engineered mutants with altered action pattern and substrate specificity. Progress in these areas will allow for the elucidation of critical roles of glycans in the biological regulation of growth factors, morphogens, cytokines, and cell-surface proteins. This extension of the capabilities of glycan analytical biotechnologies will help to translate basic science glycobiology to applied glycomedicine and drug discovery.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Biological Engineering Division, 2006.
 
"June 2006."
 
Includes bibliographical references.
 
Date issued
2006
URI
http://dspace.mit.edu/handle/1721.1/38917
http://hdl.handle.net/1721.1/38917
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Biological Engineering Division.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.