dc.contributor.advisor Y.W. Lee. en_US dc.contributor.author Bose, Amar G en_US dc.contributor.other Massachusetts Institute of Technology. Dept. of Electrical Engineering. en_US dc.date.accessioned 2007-09-28T13:07:26Z dc.date.available 2007-09-28T13:07:26Z dc.date.issued 1956 en_US dc.identifier.uri http://hdl.handle.net/1721.1/38918 dc.description Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering, 1956. en_US dc.description "June, 1956." en_US dc.description Includes bibliographical references (leaf 113). en_US dc.description.abstract Introduction: A physically realizable nonlinear system, like a linear one, is a system whose present output is a function of the past of its input. We may regard the system as a computer that operates on the past of one time function to yield the present value of another time function. Mathematically we say that the system performs a transformation on the past of its input to yield its present output. When this transformation is linear (the case of linear systems) we can take advantage of the familiar convolution integral to obtain the present output from the past of the input and the system is said to be characterized by its response to an impulse. That is, the response of a linear system to an impulse is sufficient to determine its response to any input. When the transformation is nonlinear we no longer have a simple relation like the convolution integral relating the output to the past of the input and the system can no longer be characterized by its response to an impulse since superposition does not apply. Wiener has shown, however, that we can characterize a nonlinear system by a set of coefficients and that these coefficients can be determined from a knowledge of the response of the system to shot noise excitation. Thus, shot noise occupies the same position as a probe for investigating nonlinear systems that the impulse occupies as a probe for investigating linear systems. The first section of this thesis is devoted to the Wiener theory of nonlinear system characterization. Emphasis is placed on important concepts of this theory that are used in succeeding chapters to develop a theory for determining optimum nonlinear systems. en_US dc.description.statementofresponsibility by Amar Gopal Bose. en_US dc.format.extent iii, 113 leaves en_US dc.language.iso eng en_US dc.publisher Massachusetts Institute of Technology en_US dc.rights M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. en_US dc.rights.uri http://dspace.mit.edu/handle/1721.1/7582 dc.subject Electrical Engineering. en_US dc.subject.lcsh Nonlinear systems en_US dc.subject.lcsh Time-series analysis en_US dc.title A theory of nonlinear systems en_US dc.type Thesis en_US dc.description.degree Sc.D. en_US dc.contributor.department Massachusetts Institute of Technology. Dept. of Electrical Engineering. en_US dc.contributor.department Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science dc.identifier.oclc 148082096 en_US
﻿