MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reduced-order, trajectory piecewise-linear models for nonlinear computational fluid dynamics

Author(s)
Gratton, David; Willcox, Karen E.
Thumbnail
DownloadHPCES015.pdf (280.8Kb)
Metadata
Show full item record
Abstract
A trajectory piecewise-linear (TPWL) approach is developed for a computational fluid dynamics (CFD) model of the two-dimensional Euler equations. The approach uses a weighted combination of linearized models to represent the nonlinear CFD system. The proper orthogonal decomposition (POD) is then used to create a reduced-space basis, onto which the TPWL model is projected. This projection yields an efficient reduced-order model of the nonlinear system, which does not require the evaluation of any full-order system residuals. The method is applied to the case of flow through an actively controlled supersonic diffuser. With an appropriate choice of linearization points and POD basis vectors, the method is found to yield accurate results, including cases with significant shock motion.
Date issued
2004-01
URI
http://hdl.handle.net/1721.1/3892
Series/Report no.
High Performance Computation for Engineered Systems (HPCES);
Keywords
trajectory piecewise-linear models, non-linear computational fluid dynamics, proper orthogonal decomposition

Collections
  • High Performance Computation for Engineered Systems (HPCES)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.