MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algorithmic approaches to graph states under the action of local Clifford groups

Author(s)
Bahramgiri, Moshen
Thumbnail
DownloadFull printable version (3.419Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Peter W. Shor.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Graph states are quantum states (quantum codes) in qn-dimensional space ... (q being a power of some prime number) which can be described by graphs with edges labeled from the field of order q, Fq. Graph states are determined as a common eigenvector of independent elements of the n-fold Pauli group, on which the local Clifford group has a natural action. This action induces the natural action of the local Clifford group on graph states and hence, its action on graphs. Locally equivalent graphs can be described using this action. For q being a prime number, two graphs are locally equivalent when they are located on the same orbit of this action, in other words, when there is an element of the local Clifford group mapping one graph to the other one. When q is some power of a prime number, the definition of this action is the natural generalization of this action in the case where q is prime. We translate the action of local Clifford groups on graphs to a set of linear and quadratic equations in the field F,. In the case that q is an odd number, given two arbitrary graphs, we present an efficient algorithm (polynomial in n) to verify whether these graphs are locally equivalent or not. Moreover, we present a computational method to calculate the number of inequivalent graph states. We give some estimations on the size of the orbits of this action on graphs, and prove that when either q is equal to 2 or is an odd number, the number of inequivalent quantum codes (i.e., the number of classes of equivalency) is equal to ..., which is essentially as large as the total number of graphs.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2007.
 
Includes bibliographical references (p. 87-88).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/38936
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.