MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Civil and Environmental Engineering
  • Civil and Environmental Engineering - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Civil and Environmental Engineering
  • Civil and Environmental Engineering - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Active control of extremely prestressed simple supported composite bridges

Author(s)
Dagher, Bahjat (Bahjat Nouhad)
Thumbnail
DownloadFull printable version (6.207Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Jerome J. Connor.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
More than 600,000 US bridges are considered to be in need of rehabilitation. More than 90 Billion US Dollars is the estimated amount of money required. According to the National Bridge Inventory, 18.5% of those bridges are structurally deficient. Many methods of rehabilitation have been sought out by engineers throughout the years. Perhaps the most interesting of all solutions is utilizing external post tensioning cables to add to the stiffness of the system. External post tensioning can be considered to be a cheap solution that is easy to install, and easy to fix in the future. What has not been discussed among engineers is the possibility of controlling the tendon force. Vertical deflections could be monitored and assessed, and a consequent axial prestressing force could be applied on the cables. This report investigates in detail the issues involved in the design of externally prestressed tendons on a simply supported composite bridge of specific properties, and touches on the reasoning behind active control and the limitations that the current technology has.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2007.
 
Includes bibliographical references (leaf 67).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/38940
Department
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Civil and Environmental Engineering - Master's degree
  • Civil and Environmental Engineering - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

MIT Libraries navigation

HomeSearchHours & locationsBorrow & requestResearch supportAbout the Libraries
MIT
Massachusetts Institute of Technology77 Massachusetts AvenueCambridge MA 02139-4307
All items in DSpace@MIT are protected by original copyright, with all rights reserved, unless otherwise indicated. Notify us about copyright concerns.