MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parabolic equations without a minimum principle

Author(s)
Pang, Huadong
Thumbnail
DownloadFull printable version (2.346Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Daniel Stroock.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we consider several parabolic equations for which the minimum principle fails. We first consider a two-point boundary value problem for a one dimensional diffusion equation. We show the uniqueness and existence of the solution for initial data, which may not be continuous at two boundary points. We also examine the circumstances when these solutions admit a probabilistic interpretation. Some partial results are given for analogous problems in more than one dimension.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2007.
 
Includes bibliographical references (p. 63-64).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/38958
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.