MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal Decomposition

Author(s)
Willcox, Karen E.
Thumbnail
DownloadHPCES020.pdf (247.3Kb)
Metadata
Show full item record
Abstract
The proper orthogonal decomposition (POD) has been widely used in fluid dynamic applications for extracting dominant flow features. The “gappy” POD is an extension to this method that allows the consideration of incomplete data sets. In this paper, the gappy POD is extended to handle unsteady flow reconstruction problems, such as those encountered when limited flow measurement data is available. In addition, a systematic approach for effective sensor placement is formulated within the gappy framework. Two applications are considered. The first aims to reconstruct the unsteady flow field using a small number of surface pressure measurements for a subsonic airfoil undergoing plunging motion. The second considers estimation of POD modal content of a cylinder wake flow for active control purposes. In both cases, using the dominant POD basis vectors and a small number of sensor signals, the gappy approach is found to yield accurate flow reconstruction results.
Date issued
2004-01
URI
http://hdl.handle.net/1721.1/3897
Series/Report no.
High Performance Computation for Engineered Systems (HPCES);
Keywords
Gappy Proper Orthogonal Decomposition, unsteady flow reconstruction problems

Collections
  • High Performance Computation for Engineered Systems (HPCES)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.