MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular weight modulation in polyhydroxybutyrate fermentations

Author(s)
Waters, Benjamin Ragan
Thumbnail
DownloadFull printable version (7.552Mb)
Alternative title
Molecular weight modulation in PHB fermentations
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemical Engineering.
Advisor
Charles L. Cooney.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/38974 http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Polyhydroxybutyrate (PHB) is a material with significant potential for commercial applications. It has material properties similar to isotactic polypropylene; it can be produced from renewable resources; it is biodegradable. Unfortunately, it is very brittle when compared to polypropylene. The physical property that most significantly affects elastic behavior is molecular weight. In an effort to understand how molecular weight is formed in PHB production, kinetic studies of PHB fermentations have been performed using fermentation conditions which allow biomass growth and PHB production phases to be separated. These data indicate that molecular weight increases very quickly and then remains fairly constant in PHB fermentations. Additional studies have indicated that only slight changes in molecular weight can be caused by changing fermentation process conditions or using mutants of the polymerization enzyme. Additionally, one mutant polymerization enzyme has been shown to excrete moderate levels of PHB monomer, 3-hydroxybutyrate, into the fermentation media. This may have application in achieving synthetic production of PHB.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, June 2007.
 
Includes bibliographical references.
 
Date issued
2007
URI
http://dspace.mit.edu/handle/1721.1/38974
http://hdl.handle.net/1721.1/38974
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Chemical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.