MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unobtrusive integration of magnetic generator systems into common footwear

Author(s)
Hayashida, Jeffrey Yukio, 1978-
Thumbnail
DownloadFull printable version (8.752Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Joseph Paradiso.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A power generating system was designed to passively harness some of the kinetic energy available during walking. The system included a rotary arm extending down from the sole, which ultimately drove a pair of small electrical generators through a stepped-up gearbox. A one-way clutch mechanism was used to transmit torque to the gearbox. This allowed for additional spin following the initial impact of a step, also preventing lockup due to rotary inertia in the gears. The entire generator system was designed to fit in the heel of a standard running shoe, with the rotary arm compressing once during each heel strike. The final system produced a peak power of 1.61 Watts during the heel strike and an average power of 58.1 mW across the entire gait. To maximize power transfer, an ideal load was determined for the two DC generators connected in series. While the average power generated was below the desired 250 mW, initial calculations show this level can eventually be reached or exceeded with the addition of a flywheel to each generator shaft, or a spring to store more energy from the heel-strike.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2000.
 
Includes bibliographical references (leaf 31).
 
Date issued
2000
URI
http://hdl.handle.net/1721.1/39086
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.