MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Large scale structure from motion for autonomous underwater vehicle surveys

Author(s)
Pizarro, Oscar
Thumbnail
DownloadFull printable version (21.60Mb)
Other Contributors
Woods Hole Oceanographic Institution.
Advisor
Hanumant Singh.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Our ability to image extended underwater scenes is severely limited by attenuation and backscatter. Generating a composite view from multiple overlapping images is usually the most practical and flexible way around this limitation. In this thesis we look at the general constraints associated with imaging from underwater vehicles for scientific applications - low overlap, non-uniform lighting and unstructured motion - and present a methodology for dealing with these constraints toward a solution of the problem of large area 3D reconstruction. Our approach assumes navigation data is available to constrain the structure from motion problem. We take a hierarchical approach where the temporal image sequence is broken into subsequences that are processed into 3D reconstructions independently. These submaps are then registered to infer their overall layout in a global frame. From this point a bundle adjustment refines camera and structure estimates. We demonstrate the utility of our techniques using real data obtained during a SeaBED AUV coral reef survey. Test tank results with ground truth are also presented to validate the methodology.
Description
Thesis (Ph. D.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Ocean Engineering; and the Woods Hole Oceanographic Institution), 2004.
 
Includes bibliographical references (p. 177-190).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/39185
Department
Joint Program in Applied Ocean Physics and Engineering; Woods Hole Oceanographic Institution; Massachusetts Institute of Technology. Department of Ocean Engineering
Publisher
Massachusetts Institute of Technology
Keywords
/Woods Hole Oceanographic Institution. Joint Program in Applied Ocean Science and Engineering., Ocean Engineering., Woods Hole Oceanographic Institution.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.