MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Low rank decompositions for sum of squares optimization

Author(s)
Sun, Jia Li, S.M. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (2.394Mb)
Other Contributors
Massachusetts Institute of Technology. Computation for Design and Optimization Program.
Advisor
Pablo A. Parrilo.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we investigate theoretical and numerical advantages of a novel representation for Sum of Squares (SOS) decomposition of univariate and multivariate polynomials. This representation formulates a SOS problem by interpolating a polynomial at a finite set of sampling points. As compared to the conventional coefficient method of SOS, the formulation has a low rank property in its constraints. The low rank property is desirable as it improves computation speed for calculations of barrier gradient and Hessian assembling in many semidefinite programming (SDP) solvers. Currently, SDPT3 solver has a function to store low rank constraints to explore its numerical advantages. Some SOS examples are constructed and tested on SDPT3 to a great extent. The experimental results demonstrate that the computation time decreases significantly. Moreover, the solutions of the interpolation method are verified to be numerically more stable and accurate than the solutions yielded from the coefficient method.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2006.
 
Includes bibliographical references (leaves 77-79).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/39210
Department
Massachusetts Institute of Technology. Computation for Design and Optimization Program
Publisher
Massachusetts Institute of Technology
Keywords
Computation for Design and Optimization Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.