MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust fluid control of multiclass queueing networks

Author(s)
Su, Hua, S.M. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (5.245Mb)
Alternative title
Robust fluid control of multiclass queuing networks
Other Contributors
Massachusetts Institute of Technology. Computation for Design and Optimization Program.
Advisor
Dimitris J. Bertsimas.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis applies recent advances in the field of robust optimization to the optimal control of multiclass queueing networks. We develop models that take into account the uncertainty of interarrival and service time in multiclass queueing network problems without assuming a specific probability distribution, while remaining highly tractable and providing insight into the corresponding optimal control policy. Our approach also allows us to adjust the level of robustness of the solution to trade off performance and protection against uncertainty. We apply robust optimization to both open and closed queueing networks. For open queueing networks, we study control problems that involve sequencing, routing and input control decision, and optimize the total holding cost. For closed queueing networks, we focus on the sequencing problem and optimize the throughput. We compare the robust solutions to those derived by fluid control, dynamic programming and stochastic input control. We show that the robust control policy leads to better performance. Robust optimization emerges as a promising methodology to address a wide range of multiclass queueing networks subject to uncertainty, as it leads to representations of randomness that make few assumptions on the underlying probabilities. It also remains numerically tractable, and provides theoretical insights into the structure of the optimal control policy.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2006.
 
Includes bibliographical references (p. 89-92).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/39212
Department
Massachusetts Institute of Technology. Computation for Design and Optimization Program
Publisher
Massachusetts Institute of Technology
Keywords
Computation for Design and Optimization Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.