MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A systems-theoretic security model for large scale, complex systems applied to the US air transportation system

Author(s)
Laracy, Joseph R. (Joseph Raymond)
Thumbnail
DownloadFull printable version (1.105Mb)
Alternative title
systems-theoretic security model for large scale, complex systems applied to the US air transportation system
Other Contributors
Massachusetts Institute of Technology. Engineering Systems Division.
Advisor
Nancy G. Leveson.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Classical risk-based or game-theoretic security models rely on assumptions from reliability theory and rational expectations economics that are not applicable to security threats. Additionally, these models suffer from serious deficiencies when they are applied to software-intensive, socio-technical systems. Recent work by Leveson in the area of system safety engineering has led to the development of a new accident model for system safety that acknowledges the dynamic complexity of accidents. Systems-Theoretic Accident Models and Processes (STAMP) applies principles from control theory to enforce constraints on hazards and thereby prevent accidents. Appreciating the similarities between safety and security while still acknowledging the differences, this thesis extends STAMP to security problems. In particular, it is applied to identify and mitigate the threats that could emerge in critical infrastructures such as the Air Transportation System. Furthermore, recommendations are provided to assist systems engineers and policy makers in securely transitioning to the Next Generation Air Transportation System (NGATS).
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division, 2007.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 129-132).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/39256
Department
Massachusetts Institute of Technology. Engineering Systems Division
Publisher
Massachusetts Institute of Technology
Keywords
Engineering Systems Division.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.