Show simple item record

dc.contributor.advisorBruno Coppi.en_US
dc.contributor.authorRoytershteyn, Vadimen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Physics.en_US
dc.date.accessioned2007-10-22T17:31:26Z
dc.date.available2007-10-22T17:31:26Z
dc.date.copyright2006en_US
dc.date.issued2007en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/39291
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, February 2007.en_US
dc.descriptionIncludes bibliographical references (leaves 95-100).en_US
dc.description.abstractThe problem of excitation of the drift-tearing mode (Coppi, 1964) in high-temperature plasmas is considered. Existing theories predict that under the conditions typical of modern toroidal experiments on nuclear fusion, the mode is linearly stable in both collisionless (Coppi et al., 1979), and in a weakly collisional (Antonsen and Drake, 1983) regimes. We propose that the presence of a spectrum of background microscopic modes leads to destabilization of the drift-tearing mode by significantly altering the electron thermal energy transport. Two phenomenological models that illustrate this possibility are considered. In particular, we demonstrate that a localized reduction in parallel electron thermal conductivity, or a localized depression in the electron temperature gradient cause a significant reduction of the mode excitation threshold, as measured by Acrit, the jump of the first derivative of the magnetic field across the reconnection layer. Both experimental observations and theoretical considerations indicate that in the regimes of interest the values of the perpendicular thermal diffusivity D are significantly higher than the corresponding collisional estimates. Therefore the influence of the perpendicular heat flux on the excitation properties of the drift-tearing mode must be analyzed.en_US
dc.description.abstract(cont.) The result is that for D above a certain critical value D, which depends on the parallel thermal diffusivity and parameter re = dlnTe/dlnx, the excitation threshold of the mode is significantly reduced, and can be negative. This indicates the presence of an additional drive for the mode, which has been identified as the perpendicular electron temperature gradient. When D > D, the growth rate of the mode is an increasing function of the parameter qe, which is in contrast to the regime of relatively small or zero perpendicular thermal diffusivity, D < D, where the mode becomes more stable as re is increased. In the collisionless regime the drift-tearing mode is stabilized by the effects of the electron Landau damping, which play a role similar to that of the parallel thermal conductivity in the weakly collisional regime. It is well known that Landau damping can be significantly affected by such effects as spatial and velocity-space diffusion. We consider the influence of the resonance broadening due to particle spatial diffusion on the excitation properties of the drift-tearing mode. Such resonance broadening is found to cause a reduction of the excitation threshold. However, the employed semi-analytical treatment of the problem allows only consideration of relatively small values of the corresponding diffusion coefficient. In this regime the reduction in the excitation threshold is rather small.en_US
dc.description.statementofresponsibilityby Vadim Roytershteyn.en_US
dc.format.extent100 leavesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectPhysics.en_US
dc.titleMagnetic reconnection in high-temperature plasmas : excitation of the drift-tearing mode and the transport of electron thermal energyen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.oclc173002856en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record