MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational modeling of crack initiation in cross-role piercing

Author(s)
Chiluveru, Sudhir
Thumbnail
DownloadFull printable version (8.787Mb)
Other Contributors
Massachusetts Institute of Technology. Computation for Design and Optimization Program.
Advisor
Raúl A. Radóvitzky.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Thle Mannesmann process is the preferred method in the oil industry for fabrication of hollow pipes. The critical phenomenon in this process is the formation of a small round hole at the center of the cylindrical billet ahead of the piercing plug. In this work the crack initiation that leads to the creation of tile small hole has been modeled. The Gurson-Tvergaard-Needlemnan model of porous plasticity is used to simulate the Mannesmann effect. The appearance of a crack at the center of the cylindrical bar is demonstrated and the stress profiles, plastic equivalent strain profiles and porosity distribution during the deformation process are analyzed. The influence of various parameters in the model on the evolution of porosity in tile specimen is studied. Other simple ductile fracture criteria that are proposed in literature are also implemented. An interface model for fracture using the discontinuous Galerkin framework combined with a cohesive fracture law is implemented. This approach and its advantages are illustrated in the application of tensile loading of a simple beam specimen.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2007.
 
Includes bibliographical references (p. 81-89).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/39325
Department
Massachusetts Institute of Technology. Computation for Design and Optimization Program
Publisher
Massachusetts Institute of Technology
Keywords
Computation for Design and Optimization Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.