MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Molecular Engineering of Biological and Chemical Systems (MEBCS)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Molecular Engineering of Biological and Chemical Systems (MEBCS)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Preparation of PtNi Nanoparticles for the Electrocatalytic Oxidation of Methanol

Author(s)
Deivaraj, T.C.; Chen, Wei Xiang; Lee, Jim Yang
Thumbnail
DownloadMEBCS019.pdf (735.6Kb)
Metadata
Show full item record
Abstract
Carbon supported PtNi nanoparticles were prepared by hydrazine reduction of Pt and Ni precursor salts under different conditions, namely by conventional heating (PtNi-1), by prolonged reaction at room temperature (PtNi-2) and by microwave assisted reduction (PtNi-3). The nanocomposites were characterized by XRD, EDX, XPS and TEM and used as electrocatalysts in direct methanol fuel cell (DMFC) reactions. Investigations into the mechanism of PtNi nanoparticle formation revealed that platinum nanoparticle seeding was essential for the formation of the bimetallic nanoparticles. The average particle size of PtNi prepared by microwave irradiation was the lowest, in the range of 2.9 – 5.8 nm. The relative rates of electrooxidation of methanol at room temperature as measured by cyclic voltammetry showed an inverse relationship between catalytic activity and particle size in the following order PtNi-1 < PtNi-2 < PtNi-3.
Date issued
2004-01
URI
http://hdl.handle.net/1721.1/3943
Series/Report no.
Molecular Engineering of Biological and Chemical Systems (MEBCS);
Keywords
direct methanol fuel cells, platinum nickel, alloy nanoparticles, microwave assisted synthesis, electroxidation of methanol

Collections
  • Molecular Engineering of Biological and Chemical Systems (MEBCS)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.