MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

"If it quacks like a sphere" : the million dollar problem

Author(s)
Ornes, Stephen
Thumbnail
DownloadFull printable version (1.919Mb)
Other Contributors
Massachusetts Institute of Technology. Graduate Program in Science Writing.
Advisor
Thomas Levenson.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Grigori Perelman, a reclusive Russian mathematician, may have proved the Poincare Conjecture, a statement first poised by Jules Henri Poincare in 1902. The problem is the most eminent challenge in the mathematical field of topology. Perelman posted his proof on the online informal preprint server at arXiv.org. His proof leaves a number of details unexplained. Although he initially participated in the verification of his proof, answering questions to help people understand his work, in the last year Perelman has effectively disappeared from the mathematical community. His absence has caused some controversy in the world of mathematics, where individual mathematicians are usually expected to support their own results. In the wake of his disappearance, other mathematicians are coming together to pore over his work and try to flesh out the details. His apparent desertion raises questions both about the personal risk of mathematicians working at the highest level and the responsibility of the mathematical community in the verification process.
 
(cont.) These questions are further complicated by the fact that the Poincare Conjecture is one of seven problems that was selected by the Clay Mathematics Institute as a Millennium Prize Problem. If a mathematician solves one of the problems, he or she will receive $1 million from the institute. If Perelman's work turns out to point the way to the prize, then the Clay Institute will have to decide how to distribute both credit and the hefty monetary prize.
 
Description
Thesis (S.M. in Science Writing)--Massachusetts Institute of Technology, Dept. of Humanities, Graduate Program in Science Writing, 2006.
 
"September 2006."
 
Includes bibliographical references (leaves 38-39).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/39443
Department
Massachusetts Institute of Technology. Graduate Program in Science Writing; MIT Program in Writing & Humanistic Studies
Publisher
Massachusetts Institute of Technology
Keywords
Graduate Program in Science Writing.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.