MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Artificial muscle morphology : structure/property relationships in polypyrrole actuators

Author(s)
Pytel, Rachel Zimet
Thumbnail
DownloadFull printable version (26.11Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Edwin L. Thomas and Ian W. Hunter.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/39537 http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We seek to improve polypyrrole and other conducting polymer actuators by discovering and exploiting the connection between nanoscale transport events and macroscale active strain. To this end we have used diffraction and electron microscopy to investigate the microstructure of polypyrrole. and propose a new description consisting of disordered polypyrrole chains held together by small crystalline bundles, around which solvent and counterions are randomly distributed. We utilize different modes of deformation to impart orientational texture to polypyrrole films, and show that by controlling polymer chain conformation and packing at a sub-micron level a conducting polymer actuator can be engineered that shows a significantly larger macroscopic electroactive response. We also alter the synthesis and doping conditions to produce films with widely varying surface morphologies, allowing us to control the rate of electroactive response. Our detailed understanding of polypyrrole morphology at different lengthscales provides valuable insight to the mechanisms of polypyrrole actuation, and has helped us process polypyrrole more intelligently for improved electroactive devices.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007.
 
Includes bibliographical references (leaves 183-204).
 
Date issued
2007
URI
http://dspace.mit.edu/handle/1721.1/39537
http://hdl.handle.net/1721.1/39537
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.