MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantitative studies in effects of additives on protein aggregation

Author(s)
Shinde, Chetan (Chetan Ulhas)
Thumbnail
DownloadFull printable version (3.253Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Bernhardt L. Trout.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Rational design of protein additives has been limited by the understanding of mechanism of protein and additive interaction. In this work we have applied molecular dynamics with all atom potentials in order to study the thermodynamic effect of additives on proteins. The method is based on statistical mechanical model that characterizes the preferential binding of proteins to either water or additives. Extensive study was done on model systems comprising of additives urea, glycerol & arginine hydrochloride and proteins RNaseT1 and hen egg lysozyme. Trajectories in range 10-19 nanoseconds were analyzed in order to validate this method and compared with the experimental results. The method was found to agree with experimental results for the first 2 nanoseconds and the extended runs were studied further to narrow down the cause of deviations. Protein RNaseT1 was found to be very unstable and consequently showed very high deviations in preferential binding for longer runs. Constraining the protein using harmonic potential has resulted in better averages for RNase T1.
 
(cont.) Lysozyme has been found to be very stable and the calculations are in good agreement with experimental values. Local preferential binding calculations showed the importance of structure as well as sequence in prediction of preferential binding of protein.
 
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007.
 
Includes bibliographical references (p. 61-62).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/39541
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.