MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Searching for stochastic gravitational waves using co-located interferometric detectors

Author(s)
Fotopoulos, Nickolas
Thumbnail
DownloadFull printable version (3.886Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Erotokritos Katsavounidis.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Despite their intrinsic advantages due to co-location, the two LIGO (Laser Interferometer Gravitational Wave Observatory) Hanford interferometers have not been used in the search for the stochastic gravitational wave background due to their coupling to a shared environment, which may be comparable to or exceed any gravitational signal. In this thesis, using data from LIGO's fourth science run, we demonstrate a technique to relate the H1-H2 coherence to coupling with physical environmental channels. We show that the correspondence is tight enough to correctly identify regions of high and low coupling and the nature of the coupling in the data set. A simple thresholding provides frequency vetoes, which we can use to derive a significantly cleaner coherence spectrum. Next, using this frequency veto technique and data from the first epoch of LIGO's fifth, currently running science run, we design, implement, and perform a search for astrophysical populations of gravitational wave emitters, which emit predominantly in the kilohertz region of the spectrum, a region totally inaccessible to detectors separated by thousands of kilometers. As well as providing us with a proof-of-concept, the results provide an advanced look at the physical results to come from H1-H2 by the end of S5.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Physics, 2006.
 
Includes bibliographical references (p. 83-85).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/39567
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.