MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

New perspectives on ab initio calculation and physical insights gained through linkage to continuum theories

Author(s)
Ismail-Beigi, Sohrab, 1971-
Thumbnail
DownloadFull printable version (8.636Mb)
Alternative title
Ab initio calculation and physical insights gained through linkage to continuum theories
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Tomás A. Arias and John D. Joannopoulos.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We explore the use of ab initio, density-functional methods for the study of large-scale materials problems. Three examples are presented: (i) the interplay of surface and edge reconstructions in long silicon nanowires, where we examine the effects on electrical and mechanical properties; (ii) the calculation of solvation effects based on ab initio dielectric models, where we derive the dielectric treatment as a coarse-grained molecular description, apply our method to the hydrolysis reaction of methylene chloride, and examine simplifications to our ab initio method; and (iii) the study of screw dislocation cores in bcc molybdenum and tantalum, where we find core structures contrary to those commonly accepted and barriers to dislocation motion in better agreement with experiment. Methodologically, we present a new matrix-based, algebraic formalism for ab initio calculations which modularizes and isolates the roles played by the basis set, the energy functional, the algorithm used to achieve self-consistency, and the computational kernels. Development and implementation of new techniques amounts to derivation and transcription of algebraic expressions. Modularizing the computational kernels yields portable codes that are easily optimized and parallelized, and we present highly efficient kernels for scalar, shared, and distributed memory computers. We conclude with an analytical study of the spatial locality of the single-particle density matrix in solid-state systems. This locality reflects the localization of electronic states and is essential for real-space and O(N) methods. We derive new behavior for this spatial range contrary to previous proposals, and we verify our findings in model semiconductors, insulators, and metals.
Description
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Physics, 2000.
 
Includes bibliographical references (p. 159-165).
 
Date issued
2000
URI
http://hdl.handle.net/1721.1/39637
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.