Show simple item record

dc.contributor.advisorDavid L. Darmofal.en_US
dc.contributor.authorFidkowski, Krzysztof J., 1981-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.en_US
dc.date.accessioned2008-11-10T19:55:01Z
dc.date.available2008-11-10T19:55:01Z
dc.date.copyright2007en_US
dc.date.issued2007en_US
dc.identifier.urihttp://dspace.mit.edu/handle/1721.1/39701en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/39701
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.en_US
dc.descriptionIncludes bibliographical references (p. 169-175).en_US
dc.description.abstractWhile an indispensable tool in analysis and design applications, Computational Fluid Dynamics (CFD) is still plagued by insufficient automation and robustness in the geometry-to-solution process. This thesis presents two ideas for improving automation and robustness in CFD: output-based mesh adaptation for high-order discretizations and simplex, cut-cell mesh generation. First, output-based mesh adaptation consists of generating a sequence of meshes in an automated fashion with the goal of minimizing an estimate of the error in an engineering output. This technique is proposed as an alternative to current CFD practices in which error estimation and mesh generation are largely performed by experienced practitioners. Second, cut-cell mesh generation is a potentially more automated and robust technique compared to boundary-conforming mesh generation for complex, curved geometries. Cut-cell meshes are obtained by cutting a given geometry of interest out of a background mesh that need not conform to the geometry boundary. Specifically, this thesis develops the idea of simplex cut cells, in which the background mesh consists of triangles or tetrahedra that can be stretched in arbitrary directions to efficiently resolve boundary-layer and wake features.en_US
dc.description.abstract(cont.) The compressible Navier-Stokes equations in both two and three dimensions are discretized using the discontinuous Galerkin (DG) finite element method. An anisotropic h-adaptation technique is presented for high-order (p > 1) discretizations, driven by an output-error estimate obtained from the solution of an adjoint problem. In two and three dimensions, algorithms are presented for intersecting the geometry with the background mesh and for constructing the resulting cut cells. In addition, a quadrature technique is proposed for accurately integrating high-order functions on arbitrarily-shaped cut cells and cut faces. Accuracy on cut-cell meshes is demonstrated by comparing solutions to those on standard, boundary-conforming meshes. In two dimensions, robustness of the cut-cell, adaptive technique is successfully tested for highly-anisotropic boundary-layer meshes representative of practical high-Re simulations. In three dimensions, robustness of cut cells is demonstrated for various representative curved geometries. Adaptation results show that for all test cases considered, p = 2 and p = 3 discretizations meet desired error tolerances using fewer degrees of freedom than p = 1.en_US
dc.description.statementofresponsibilityKrzysztof Jakub Fidkowski.en_US
dc.format.extent175 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/39701en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleA simplex cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equationsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc176864177en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record