MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stable hopping of a muscle-actuated leg system using positive force feedback

Author(s)
Wongviriyawong, Chanikarn Mint
Thumbnail
DownloadFull printable version (10.73Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Hugh M. Herr.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In control of movement, two key components, which are pure mechanical response of the system and response due to sensory feedback, must be thoroughly understood. Recent studies suggest not only the existence of positive force feedback in vivo, but also the emergent property of positive force feedback in having a stabilizing effect on a dynamical system in the presence of disturbances. In this thesis, simulated environment of simple one-dimensional point mass hopping model with positive force feedback as well as experimental results of the same dynamical system are compared and studied in detail. Three important hypotheses are investigated. The first hypothesis involves positive force feedback and its stabilization property despite disturbances in the system. A system with positive force feedback control attains cyclic motion while system energy is being added or removed without changing its steady state system energy. Secondly, overall mechanical behavior of the leg becomes elastic in the existence of positive force feedback. In locomotion, elastic leg behavior is desired for a pertinent adaptation to physical properties of the environment and utilization of the locomotory performances.
 
(cont.) The last hypothesis investigated is the effect of feedback control parameters on closed loop system behavior, i.e. frequency of hopping, steady state hopping height, etc. Simulation and pilot experimental data are compared both qualitatively and quantitatively concerning all three hypotheses.
 
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.
 
Includes bibliographical references (leaves 89-92).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/39725
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.