Analysis of system wide distortion in an integrated power system utilizing a high voltage DC bus and silicon carbide power devices
Author(s)
Fallier, William F. (William Frederick)
DownloadFull printable version (48.27Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
James L. Kirtley.
Terms of use
Metadata
Show full item recordAbstract
This research investigates the distortion on the electrical distribution system for a high voltage DC Integrated Power System (IPS). The analysis was concentrated on the power supplied to a propulsion motor driven by an inverter with simulated silicon carbide switches. Theoretically, silicon carbide switches have the advantage of being able to withstand a very large blocking voltage and carry very large forward currents. Silicon carbide switches are also very efficient due to their quick rise and fall times. Since silicon carbide switches can withstand high voltage differentials and switch faster than silicon switches, the switching effects on the electrical distribution system were investigated. The current state of silicon carbide power electronics was also investigated. This research quantifies the current and voltage distortion over various operating conditions. A system model was developed using Matlab, Simulink, and SimPowerSystems. The model consisted of a synchronous generator supplying a rectifier and inverter set driving an induction motor. This induction motor simulates the propulsion motor for a Navy ship. This model had a DC link voltage of 10 kV in order to simulate future Navy IPS systems. The current and voltage distortion were compared to MIL STD 1399 and IEEE STD 519 and 45.
Description
Thesis (Nav. E.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007. Includes bibliographical references (p. 81-82).
Date issued
2007Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mechanical EngineeringPublisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering., Electrical Engineering and Computer Science.