Improved synthesis and application of planar-chiral nucleophilic catalysts in asymmetric reactions and copper-catalyzed enantioselective N-H insertion reactions
Author(s)
Lee, Elaine C
DownloadFull printable version (8.109Mb)
Alternative title
Copper-catalyzed enantioselective N-H insertion reactions
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemistry.
Advisor
Gregory C. Fu.
Terms of use
Metadata
Show full item recordAbstract
The development of an improved synthesis of nucleophilic planar-chiral catalysts is described in Chapter 1. This route is amenable to scale-up and preparative chiral HPLC is unnecessary to resolve the racemic catalysts. Using planar-chiral catalysts, two synthetic methodology projects have been developed: Chapter 2 describes the first asymmetric synthesis of trans P-lactams, and Chapter 3 describes the asymmetric synthesis of tertiary a-chloroesters. In the chapter describing the asymmetric synthesis of trans [beta]-lactams, we present mechanistic data supporting a novel mechanism, in which the N-triflylimine, rather than the ketene, reacts with the catalyst first. In the chapter describing the asymmetric synthesis of tertiary a-chloroesters, we introduced an under-utilized commercially available chlorinating reagent (2,2,6,6-tetrachlorocyclohexanone). Finally, in chapter 4, the Cu-catalyzed asymmetric synthesis of [alpha]-aminoesters via an N-H insertion is described. We have demonstrated that carbamates such as BocNH2 and CbzNH2 are efficient coupling partners in reactions with a-diazoesters to generate highly useful Boc- or Cbz-protected a-aminoesters.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2007. Vita. Includes bibliographical references.
Date issued
2007Department
Massachusetts Institute of Technology. Department of ChemistryPublisher
Massachusetts Institute of Technology
Keywords
Chemistry.