MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Advanced Materials for Micro- and Nano-Systems (AMMNS)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Advanced Materials for Micro- and Nano-Systems (AMMNS)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Solid-shell element model of assumed through-thickness electric distribution for laminate composite piezoelectric structures

Author(s)
Yi, Sung; Yao, Lin-Quan
Thumbnail
DownloadAMMNS023.pdf (133.2Kb)
Metadata
Show full item record
Abstract
The eight-node solid-shell finite element models have been developed for the analysis of laminated composite pate/shell structures with piezoelectric actuators and sensors. To resolve the locking problems of the solid-shell elements in laminated materials and improve accuracy, the assumed natural strain method and hybrid stress method are employed. The nonlinear electric potential distribution in piezoelectric layer is described by introducing internal electric potential. The developed finite element models, especially, electric potential node model, have the advantages of simpler modeling and can obtain same effect that exact solution described.
Date issued
2002-01
URI
http://hdl.handle.net/1721.1/3988
Series/Report no.
Advanced Materials for Micro- and Nano-Systems (AMMNS);
Keywords
laminate composite structure, piezoelectric material, finite element method, hybrid stress element

Collections
  • Advanced Materials for Micro- and Nano-Systems (AMMNS)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.