MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Trajectory Piecewise-Linear Approach to Model Order Reduction and Fast Simulation of Nonlinear Circuits and Micromachined Devices

Author(s)
RewieÅ ski, MichaÅ
Thumbnail
DownloadHPCES028.pdf (332.9Kb)
Metadata
Show full item record
Abstract
In this paper we present an approach to the nonlinear model reduction based on representing the nonlinear system with a piecewise-linear system and then reducing each of the pieces with a Krylov projection. However, rather than approximating the individual components to make a system with exponentially many different linear regions, we instead generate a small set of linearizations about the state trajectory which is the response to a 'training input'. Computational results and performance data are presented for a nonlinear circuit and a micromachined fixed-fixed beam example. These examples demonstrate that the macromodels obtained with the proposed reduction algorithm are significantly more accurate than models obtained with linear or the recently developed quadratic reduction techniques. Finally, it is shown tat the proposed technique is computationally inexpensive, and that the models can be constructed 'on-the-fly', to accelerate simulation of the system response.
Date issued
2002-01
URI
http://hdl.handle.net/1721.1/4020
Series/Report no.
High Performance Computation for Engineered Systems (HPCES);
Keywords
nonlinear model reduction, piecewise-linear approach, Krylov projection, nonlinear circuits, micromachined devices

Collections
  • High Performance Computation for Engineered Systems (HPCES)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.