MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Innovation in Manufacturing Systems and Technology (IMST)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Innovation in Manufacturing Systems and Technology (IMST)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

2.5 D Cavity Balancing

Author(s)
Jin, S.; Lam, Yee Cheong
Thumbnail
DownloadIMST001.pdf (95.86Kb)
Metadata
Show full item record
Abstract
Cavity balancing is the process of altering the flow front within a cavity through thickness and design changes such that the desired fill pattern is achieved. The 2 dimensional (2D) cavity-balancing algorithm, developed by Lam and Seow [1] can only handle 2D geometry. This represents a major drawback as most, if not all of the practical injected parts are not 2D parts. To overcome this difficulty, the present investigation has developed a 2.5 dimensional (2.5D) cavity balancing optimization routine implemented within a 2.5 D finite elements domain. The aim of the automated cavity balancing routine is to reduce product development time and to improve product quality. This will lower the level of prerequisite expert knowledge necessary for successful mold and part design. The automated cavity balancing routine has been developed using the concept of flow paths. The hill-climbing algorithm of Lam and Seow is utilized but modified for the generation of flow paths for 2.5D parts. The algorithm has been implemented in a computer program running as an external loop to the MOLDFLOW software. Case studies are provided to demonstrate the efficiency of this routine.
Date issued
2002-01
URI
http://hdl.handle.net/1721.1/4022
Series/Report no.
Innovation in Manufacturing Systems and Technology (IMST);
Keywords
cavity balancing, flow path generation, plastic injection-molded parts

Collections
  • Innovation in Manufacturing Systems and Technology (IMST)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.