MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Innovation in Manufacturing Systems and Technology (IMST)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Innovation in Manufacturing Systems and Technology (IMST)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Functional design of mechanical products based on behavior-driven function-environment-structure modeling framework

Author(s)
Zhang, W.Y.; Tor, Shu Beng; Britton, G.A.; Deng, Y.M.
Thumbnail
DownloadIMST010.pdf (130.8Kb)
Metadata
Show full item record
Abstract
The relative significance of upstream design activity to downstream design activity is widely recognized, due to its critical role in determining the final product’s functionality. Although there are now some general methodologies dealing with functions or reasoning about functions, virtually no commercial CAD system can support functional design. In functional modeling, a design problem is represented in a hierarchy of functions and the behaviors that realize the functions. This paper presents a functional design methodology based on a behavior-driven function-environment-structure (B-FES) modeling framework to guide functional design through functional reasoning steps including causal behavioral reasoning (CBR) and functional decomposition. The proposed functional design starts from a set of design specifications including functional requirements and design constraints, and results in diverse behavioral schema corresponding to a set of design alternatives. A design example for functional design of a terminal cut-off unit in an automatic assembly system is used to provide a demonstration of the proposed functional design methodology.
Date issued
2002-01
URI
http://hdl.handle.net/1721.1/4031
Series/Report no.
Innovation in Manufacturing Systems and Technology (IMST);
Keywords
functional modeling, behavior-driven function-environment-structure, causal behavioral reasoning, functional decomposition

Collections
  • Innovation in Manufacturing Systems and Technology (IMST)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.