Show simple item record

dc.contributor.advisorBrian LaBombard and Ronald R. Parker.en_US
dc.contributor.authorLyons, Laurence Anthonyen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2008-02-27T20:38:24Z
dc.date.available2008-02-27T20:38:24Z
dc.date.copyright2007en_US
dc.date.issued2007en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/40321
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionIncludes bibliographical references (p. 119-120).en_US
dc.description.abstractLangmuir probe diagnostic systems presently employed on Alcator C-Mod and elsewhere generally suffer from a severe limitation: unless multiple electrode or high-frequency bias techniques are employed, these systems can not resolve the rapid changes in plasma electron temperature, floating potential and ion saturation current that are associated with plasma turbulence. Moreover, no existing system can provide real-time output of these three parameters using a single electrode. To remedy this limitation, an advanced, high-bandwidth Langmuir probe system has been constructed for Alcator C-Mod using state-of-the-art design tools and components. The system produces a fast-switched, three-state probe bias waveform and employs a new method for outputting plasma conditions in real-time, a 'Mirror Langmuir Probe' (MLP), which utilizes high-bandwidth bipolar transistors to electrically simulate a Langmuir probe's response. Detailed information on the design, construction and performance of this new diagnostic is described in this thesis, representing the first proof-of-principle demonstration of the MLP technique. The MLP system was found to meet all the performance goals set forth at the beginning of the project: real-time output of electron temperature, floating potential and ion saturation current, ability to track changes in plasma parameters within a ~1 [mu]s timescale, while utilizing only a single Langmuir electrode. The system was tested using an 'electronic Langmuir probe' and also using an actual Langmuir probe in Alcator C-Mod. In both cases, the system accurately locked onto changing plasma conditions (< ~5% error in outputted parameters), with the exception of some severe transient events found in C-Mod plasmas (ELMs), which challenged the system's accuracy.en_US
dc.description.abstract(cont.) Further refinements to the system have been identified to handle such cases. The MLP clearly demonstrated superior performance to existing Langmuir probe systems on Alcator C-Mod and should enable researchers to study edge plasma turbulence in much greater detail in the future.en_US
dc.description.statementofresponsibilityby Laurence Anthony Lyons.en_US
dc.format.extent125 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleConstruction and operation of a Mirror Langmuir Probe diagnostic for the Alcator C-Mod tokamaken_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc191913315en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record