MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Innovation in Manufacturing Systems and Technology (IMST)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Innovation in Manufacturing Systems and Technology (IMST)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reactive Schedule Repair of Job Shops

Author(s)
Raheja, Amritpal Singh; Subramaniam, Velusamy
Thumbnail
DownloadIMST017.pdf (19.31Kb)
Metadata
Show full item record
Abstract
Disruptions to job shop schedules are tedious and difficult to incorporate after the schedule has been generated and implemented on the shop floor. In order to deal with such disruptions, a real time reactive scheduling strategy is essential. Reactive scheduling is the process of repairing the predictive schedule during online execution for internal disruptions (e.g. machine breakdowns) and external deviations (e.g. prepone or postpone of orders). Existing approaches for schedule repair in real time mainly utilize heuristics such as Right Shift Rescheduling (RSR), and Affected Operation Rescheduling (AOR). In the present form, both these approaches are only used for handling machine breakdowns in the shop floor, but are inept in accommodating new and unexpected job orders. These approaches also neglect specific issues related to urgent jobs, for instance multiple job routings during the repair of the schedule. In this paper the existing heuristics (RSR and AOR) have been modified to include urgent jobs. Also a modified AOR approach (mAOR) is proposed that considers urgent jobs with multiple job routings. An extensive simulation study has been conducted on a job shop simulation testbed for the efficiency and stability of the repaired schedule using the mAOR and RSR heuristics. The efficiency of the repaired schedule is a measure of the percentage change in the makespan after incorporating repairs whereas the stability of the schedule is a function of starting time deviations that indicate the degree by which it deviates from the original schedule. The results of the experiments indicate significant benefits of the modified AOR algorithm over the existing RSR schedule repair heuristic.
Date issued
2002-01
URI
http://hdl.handle.net/1721.1/4038
Series/Report no.
Innovation in Manufacturing Systems and Technology (IMST);
Keywords
schedule repair heuristics, job shop schedule

Collections
  • Innovation in Manufacturing Systems and Technology (IMST)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.