MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

One hundred channel electrophoresis prototypes for application to an ultra-high throughput mutational spectrometer

Author(s)
Beltran, Michael J. (Michael Joseph)
Thumbnail
DownloadFull printable version (4.366Mb)
Alternative title
100 channel electrophoresis prototypes for application to an ultra-high throughput mutational spectrometer
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Ian W. Hunter.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Mutation detection within the human genome is becoming an increasingly important field today. It is possible that with a correlation between diseases and the mutations that cause them, new therapeutic treatments could be developed against many of today's common diseases In order to accomplish mutation detection, 1012 gene segments may be needed, requiring a significant increase in current technologies An instrument termed an Ultra-high throughput mutational spectrometer (UTMS) uses a process known as constant denaturing capillary electrophoresis (CDCE) to detect mutations in 10,000 capillaries simultaneously. The UTMS is at a 100-capillary proof of concept stage to successfully perform CDCE. In order for this stage to be successful, multiple subsystems of the device must work in unison, including thermal control, optical detection, electrical and fluidic connectivity. In this thesis, multiple devices were created to work in conjunction with previously existing instruments, including a passively aligned 100-port buffer reservoir and DNA injection loading plate. These devices were used to perform electrophoresis on DNA fluorescent primers in order to test the functionality of the UTMS 100-stage concept.
 
(cont.) A procedure for performing these experiments was developed in order to minimize risk and maximize chance of success. Successful isolation of individual signal detection was accomplished through the use of these procedures and devices, proving the 100-capillary proof of concept may reliably and repeatedly perform CDCE on the UTMS.
 
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.
 
Includes bibliographical references (leaves 58-59).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/40398
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.