MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and implementation of balance control in a humanoid robot

Author(s)
Englot, Brendan J
Thumbnail
DownloadFull printable version (1.359Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Steve G. Massaquoi.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A proportional derivative control strategy was developed for the purpose of achieving balance in a humanoid robot. An artificial muscle model was adapted which modified physiological parameters for the purpose of controlling a lightweight robot skeleton. Gains were modified as a function of joint angles to permit low gain near the equilibrium point, and consequently to promote a human-like swaying behavior that is energy-efficient. The control strategy was testing by placing a non-zero initial condition on the ankle joint angle and observing the robot, both physically and in simulation, attempt to achieve a stable swaying pattern. This was achieved successfully in a simulation of the robot's mass and inertial parameters, but further efforts must be made to obtain the same behavior in the robot. The ability of a robot to successfully balance using a human-like sway pattern adds another successful biomimetic feature to humanoid robot control and in addition should improve the efficiency of such systems.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.
 
Includes bibliographical references (leaf 28).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/40427
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.