MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of a model pipeline for testing of piezoelectric micro power generator for the Trans-Alaska Pipeline System

Author(s)
Lah, Mike M. (Mike Myoung)
Thumbnail
DownloadFull printable version (1.410Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Sang-Gook Kim.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In order to provide a reliable corrosion detection system for the Trans-Alaska Pipeline System (TAPS), a distributed wireless self-powered sensor array is needed to monitor the entire length of the pipeline at all times. Such a sensor faces two primary challenges: a method to provide power for the sensor, and a method to detect corrosion. This project has two goals: to build a model of the TAPS as a test bed for a piezoelectric micro power generator (PMPG), and to use the model to explore corrosion detection methods (perhaps by analyzing changes in the vibration spectrum), for use in the sensor array. To miniaturize the TAPS while maintaining its vibration spectrum, we will specify the dimensions of the model to have the same natural frequency, turbulent flow, and vortex induced vibrations as the actual pipeline. The model will serve as a test bed for various PMPG designs, and also serve as a starting point for exploring methods to detect corrosion in pipes. The primary vibration mode was found to be due to the natural frequency of the pipe, which was 20.2 Hz for the TAPS. Experimentally, we found the frequency to be in a range from 12-19 Hz. PMPG devices for use in the TAPS should be tuned to this frequency range.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.
 
Includes bibliographical references (leaf 27).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/40460
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.