Show simple item record

dc.contributor.advisorAnantha P. Chandrakasan and Donald E. Troxel.en_US
dc.contributor.authorChandrasekhar, Vikramen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2008-02-27T22:42:32Z
dc.date.available2008-02-27T22:42:32Z
dc.date.copyright2007en_US
dc.date.issued2007en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/40520
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.en_US
dc.descriptionIncludes bibliographical references (p. 73-77).en_US
dc.description.abstractIn this work, the benefits of using 3-D integration in the fabrication of Field Programmable Gate Arrays (FPGAs) are analyzed. A CAD tool has been developed to specify 3-dimensional FPGA architectures and map RTL descriptions of circuits to these 3-D FPGAs. The CAD tool was created from the widely used Versatile Place and Route (VPR) CAD tool for 2-D FPGAs. The tool performs timing-driven placement of logic blocks in the 3-dimensional grid of the FPGA using a two-stage Simulated Annealing (SA) process. The SA algorithm in the original VPR tool has been modified to focus more directly on minimizing the critical path delay of the circuit and hence maximizing the performance of the mapped circuit. After placing the logic blocks, the tool generates a Routing-Resource graph from the 3-D FPGA architecture for the VPR router. This allows the efficient Pathfinder-based VPR router to be used without any modification for the 3-D architecture. The CAD tool that was developed for mapping circuits to the fabricated 3-D FPGA is also used for exploring the design space for the 3-D FPGA architecture. A significant contribution of this work is a dual-interconnect architecture for the 3-D FPGA which has parasitic capacitance comparable to 2-D FPGAs. The nets routed in a 3-D FPGA are divided into intra-layer nets and inter-layer nets, which are routed on separate interconnect systems. This work also proposes a technique called I/O pipelining which pipelines the primary inputs and outputs of the FPGA through unused registers. This 3-D architecture and I/O pipelining technique have not been found in any of the works proposed so far, in the area of 3-D FPGA design. It is shown that the Dual-Interconnect I/O pipelined 3-D FPGA on an average achieves 43% delay improvement and in the best case, up to 54% for the MCNC'91 benchmark circuits.en_US
dc.description.statementofresponsibilitybu Vikram Chandrasekhar.en_US
dc.format.extent77 leavesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleCAD for a 3-dimensional FPGAen_US
dc.title.alternativeComputer Aided Design for a 3D Field Programmable Gate Arrayen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc191870733en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record