MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental and theoretical investigation of transport phenomena in nanoparticle colloids (nanofluids)

Author(s)
Williams, Wesley Charles, 1976-
Thumbnail
DownloadFull printable version (6.580Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Nuclear Science and Engineering.
Advisor
Jacopo Buongiorno and Lin-Wen Hu.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This study investigates the thermal transport behavior of nanoparticle colloids or nanofluids. The major efforts are: to determine methods to characterize a nanoparticle colloid's mass loading, chemical constituents, particle size, and pH; to determine temperature and loading dependent viscosity and thermal conductivity; to determine convective heat transfer coefficient and viscous pressure losses in an isothermal and heated horizontal tube; and finally to determine the feasibility for potential use as enhanced coolants in energy transport systems, with focus on nuclear application. The efforts result in proving that the two selected nanofluids, alumina in water and zirconia in water, have behavior that can be predicted by existing single phase convective heat transfer coefficient and viscous pressure loss correlations from the literature. The main consideration is that these models must use the measured mixture thermophysical properties. With the acquired knowledge of the experiments, investigation into the potential use or optimization of a nanofluid as an enhanced coolant is further explored. The ultimate goal of contributing to the understanding of the mechanisms of nanoparticle colloid behavior, as well as, to broaden the experimental database of these new heat transfer media is fulfilled.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2007.
 
Includes bibliographical references (p. 245-255).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/41224
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Science and Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.