MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Iterative detection for overloaded OFDMA with spatial diversity

Author(s)
Baik, Eugene
Thumbnail
DownloadFull printable version (4.223Mb)
Alternative title
Iterative detection for overloaded Orthogonal Frequency Division Multiple Access with spatial diversity
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Moe Z Win.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Orthogonal Frequency Division Multiple Access (OFDMA) systems have built-in mechanisms to mitigate the effects of the wireless multipath channel but are limited in system capacity to available bandwidth. This shortcoming can be worked around through the process of "overloading," where users are additionally multiplexed in the spatial domain to each frequency resource. To efficiently resolve non-orthogonally multiplexed users within the system, sophisticated multiple antenna receivers with multiuser detection methods are necessary. The focus of this thesis will be the formulation of an iterative multiple antenna receiver framework for overloaded uplink OFDMA systems. Specifically, we formulate optimal MAP and reduced complexity MMSE symbol detection algorithms for the multiuser detection and single user decoding turbo loop. We verify the performance of each algorithm through Monte Carlo simulation with randomly generated multipath MIMO channels. From the results we determine the tradeoffs of algorithm complexity with performance and the effect of channel correlation on the supportable user load. Our MMSE algorithm with soft interference cancellation is observed to closely approach single user performance in low to moderately correlated MIMO channels after turbo loop iteration. Additionally, we observe that increasing the number of antennas relative to the number of overloaded users can mitigate the effects of moderate correlation to provide acceptable error performance.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.
 
Includes bibliographical references (leaves 81-85).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/41254
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.