MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Offline and online SVM performance analysis

Author(s)
Chen, Kathy F. (Kathy Fang-Yun)
Thumbnail
DownloadFull printable version (4.197Mb)
Alternative title
Offline and online Support Vector Machine performance analysis
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Una-May O'Reilly.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
To understand and evaluate the performance of a machine learning algorithm, the Support Vector Machine, this thesis compares the strengths and weaknesses between the offline and online SVM. The work includes the performance comparisons of SVMLight and LaSVM, with results of training time, number of support vectors, kernel evaluations, and test accuracies. Multiple datasets are experimented to cover a wide range of input data and training problems. Overall, the online LaSVM has trained with less time and returned comparable test accuracies than SVMLight. A general breakdown of the two algorithms and their computation efforts are included for detailed analysis.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.
 
Includes bibliographical references (p. 51-52).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/41259
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.