Show simple item record

dc.contributor.advisorMujid S. Kazimi.en_US
dc.contributor.authorNewton, Thomas Hendersonen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Nuclear Science and Engineering.en_US
dc.date.accessioned2008-04-23T14:39:33Z
dc.date.available2008-04-23T14:39:33Z
dc.date.copyright2006en_US
dc.date.issued2006en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/41280
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2006.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractAn investigation has been made into converting the MIT research reactor from using high enrichment uranium (HEU) to low enrichment uranium (LEU) with a newly developed fuel material. The LEU fuel introduces negative reactivity due to absorptions in 238U, which need to be compensated by higher initial content of 235U. Given that the new fuel density is much higher than the HEU density fuel, it is possible to obtain the necessary 235U content in the same core volume. A design of the MIT Nuclear Reactor is made using high density monolithic uranium-molybdenum fuel in an attempt to eliminate the reductions in neutron flux available to experiments due to the conversion to LEU fuel, as well as increasing the flexibility for meeting the needs of in-core experiments. The optimum configuration of fuel plates was made by varying the plate number and thicknesses and using a full-core model of the MITR for the Monte-Carlo transport code MCNP to determine the effect on flux and reactivity. In addition, the use of different moderator and fuel dummy materials as well as fixed absorbers was evaluated to optimize the neutron fluxes, reactivity and neutron spectrum available for experiments. The optimum reactor design consisted of the use of half-sized fuel elements made up of nine U-7Mo LEU fuel plates of 0.55 mm thickness with 0.25 mm finned aluminum cladding. This design also utilized solid beryllium dummies with boron fixed absorbers or solid lead dummies, depending on the in-core experiment flux and spectrum needs. Using MCODE, which links MCNP and the point depletion code ORIGEN, it was determined that the refueling interval of the LEU core would be about twice as long as the HEU core at the current power level of 5 MW.en_US
dc.description.abstract(cont.) Thermal-hydraulic calculations using the multi-channel thermal-hydraulics analysis code MULCH-II indicated that the peak power channel will remain below the Onset of Nucleate Boiling under all normal operating conditions as well as loss of flow conditions. In addition, using MCNP and the thermal-hydraulics/point kinetics code PARET it was shown that all reactivity coefficients were negative and that the LEU core could withstand a step reactivity insertion of $3.69 without reaching cladding softening temperature, thus increasing the allowable reactivity for an incore experiment. Finally, it is possible to use the proposed design to increase the neutron flux by increasing core power, but with a correspondingly reduced refueling cycle length.en_US
dc.description.statementofresponsibilityby Thomas Henderson Newton, Jr.en_US
dc.format.extent312 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectNuclear Science and Engineering.en_US
dc.titleDevelopment of a low enrichment uranium core for the MIT reactoren_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineering
dc.identifier.oclc213480596en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record