MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Nuclear Engineering
  • Nuclear Engineering - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Nuclear Engineering
  • Nuclear Engineering - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Collisionless ion collection by a sphere in a weakly magnetized plasma

Author(s)
Patacchini, Leonardo
Thumbnail
DownloadFull printable version (6.088Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Nuclear Science and Engineering.
Advisor
Ian H. Hutchinson.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The interaction between a probe and a plasma has been studied since the 1920s and the pioneering work of Mott-Smith and Langmuir [1], and is still today an active topic of experimental and theoretical research. Indeed an understanding of the current collection process by an electrode is relevant to diverse matters such as Langmuir and Mach-probes calibrations, dusty plasma physics, or spacecraft charging. Recent simulations relying on the ad hoc designed code SCEPTIC have fully addressed the collisionless and unmagnetized problem for a drifting collector idealized as a sphere. SCEPTIC is a 2d/3v hybrid Particle In Cell (PIC) code, in which the ion motion is fully resolved, while the electrons are treated as a Boltzmann distributed fluid [2, 3]. In the present work we tackle the transition between the unmagnetized and the weakly magnetized regime of ion collection by a spherical probe (The mean ion Larmor radius rL > rp) in a collisionless plasma (The ion mean free path Am,fp > rp). When the sphere is at space potential, we demonstrate that the ion current dependence on the background magnetic field B is linear for low B, and provide analytical expressions for this dependence. When the probe potential can not be neglected, the problem shows two distinct scale lengths: A collisionless layer of a few rp close to the probe, followed by a collisional presheath of a few AX,fp. The chosen approach is to resolve the collisionless scale-length with SCEPTIC, while using appropriate outer boundary conditions on the potential and ion distribution function to connect with the unresolved collisional presheath. We present results of our numerical simulations for a wide range of plasma parameters of direct relevance to Langmuir and Mach-probes.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2007.
 
Includes bibliographical references (p. 133-135).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/41298
Department
Massachusetts Institute of Technology. Dept. of Nuclear Science and Engineering.
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Science and Engineering.

Collections
  • Nuclear Engineering - Master's degree
  • Nuclear Engineering - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.