MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Advanced data bus architecture using CDMA for highly reliable systems

Author(s)
Haque, Naoshin
Thumbnail
DownloadFull printable version (1.455Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Sharon L. Donald, Joel E. Schindall and Alejandro D. Dominguez-Garcia.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Conventional fault-tolerant architectures require extensive cross-strapping of redundant modules. The purpose of this thesis is to prove the feasibility of the use of code division multiple access (CDMA) to permit shared data bus architecture for fault-tolerant applications. Four families of pseudorandom codes, the Barker, gold, maximal length, and GPS C/A codes, were evaluated for their performances with respect to minimum signal gain under different uncertainties, such as varying voltage and noise levels. For data buses with three devices, the GPS C/A code performed the best. A voting process consisting of two rounds of voting, based on an extension of a solution to the Byzantine general's problem, was used to demonstrate that CDMA could be used successfully to contain a single fault in a data bus with three devices. Finally, extensions of this thesis were considered, such as having a variable number of devices on the advanced data bus system.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 69-70).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/41538
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.