MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An analysis of posynomial MOSFET models using genetic algorithms and visualization

Author(s)
Salameh, Lynne Rafik
Thumbnail
DownloadFull printable version (2.999Mb)
Alternative title
Genetic algorithms as CAD tools for analog design
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Una-May O'Reilly.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Analog designers are interested in optimization tools which automate the process of circuit sizing. Geometric programming, which uses posynomial models of MOSFET parameters, represents one such tool. Genetic algorithms have been used to evolve posynomial models for geometric programs, with a reasonable mean error when modeling MOSFET parameters. By visualizing MOSFET data using two dimensional plots, this thesis investigates the behavior of various MOSFET small and large signal parameters and consequently proposes a lower bound on the maximum error, which a posynomial cannot improve upon. It then investigates various error metrics which can be used to balance the mean and maximum errors generated by posynomial MOSFET models. Finally, the thesis uses empirical data to verify the existence of the lower bound, and compares the maximum error from various parameters modeled by the genetic algorithm and by monomial fitting. It concludes that posynomial MOSFET models suffer from inherent inaccuracies. Additionally, although genetic algorithms improve on the maximum model error, the improvement, in general, does not vastly surpass results obtained through monomial fitting, which is a less computationally intensive method. Genetic algorithms are hence best used when modeling partially convex MOSFET parameters, such as ro.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 89-90).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/41549
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.