MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Conceptual design of nuclear systems for hydrogen production

Author(s)
Hohnholt, Katherine J
Thumbnail
DownloadFull printable version (5.321Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Nuclear Science and Engineering.
Advisor
Mujid Kazimi.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Demand for hydrogen in the transportation energy sector is expected to keep growing in the coming decades; in the short term for refining heavy oils and in the long term for powering fuel cells. However, hydrogen cannot be harvested from natural sources like other fuels, it must be industrially produced. In the United States, the vast majority of hydrogen is produced today by reforming methane, a carbon-based fuel. Due to environmental and fuel source concerns, non-carbon alternatives for producing hydrogen from water are being explored using different combinations of thermal, chemical, and electrical energy. This work explores some of the non-carbon alternatives, specifically using a nuclear reactor for providing heat and electricity for high temperature steam electrolysis and a hybrid electrolysis-chemical sulfur cycle. Also addressed is the sensitivity of production and efficiency of these cycles to process conditions. For a desired hydrogen distribution pressure of 3MPa, high system pressures increase the efficiency of high temperature steam electrolysis because of the decreased post-cycle compression energy requirements. High system pressures for the hybrid sulfur cycle, however, decrease the equilibrium thermal acid decomposition necessary to the process. High temperature steam electrolysis may also be used to provide variable hydrogen production when coupled with an electricity generation system. Increased hydrogen production decreases the efficiency of the electricity production, because of the high enthalpy removed from the reactor system. Both approaches are also analyzed for their sensitivity to incomplete reactions within the process loop.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2006.
 
Includes bibliographical references (p. 77-81).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/41589
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Science and Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.