Show simple item record

dc.contributor.advisorJoseph A. Paradiso.en_US
dc.contributor.authorKim, Daniel Sangen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2008-05-19T16:01:00Z
dc.date.available2008-05-19T16:01:00Z
dc.date.copyright2006en_US
dc.date.issued2006en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/41614
dc.descriptionThesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.en_US
dc.descriptionIncludes bibliographical references (p. 107-116).en_US
dc.description.abstractAutonomous localization is crucial for many sensor network applications. The goal of this thesis is to develop a distributed localization algorithm for the PLUG indoor sensor network by analyzing sound and light sensory data from naturally occurring background phenomena as well as synthesized emulations of background transients. Our approach has two main phases: passive and active. The system enters an active mode when, its sensed region stays relatively silent and stable, hence assumed to be unoccupied; otherwise, it stays in the passive mode. In the passive mode, each node looks for sonic transients and compares the timing of its highest sound peak to that of synchronized sound peaks from other nodes in its neighborhood in order to estimate its distance. Passive ranging achieved 50.96cm error and simulated passive localization achieved 103.06cm error with a typical node-spacing of 2m. In addition, the system exploits background transients based on light sensory data to determine room boundaries. In the active mode, each node occasionally generates recorded mimics of natural sonic transients, like pencils dropping or water glasses clinking and manipulates an attached light source. Active acoustic ranging achieved 2.1cm error and simulated active localization achieved 7.97cm error with a typical node-spacing of 2m. In addition, passive location estimation in a real deployment is found to converge as more sensory data is available; range resolutions of 2.5m and localization errors of 20.3cm were obtained after running in passive mode for 20 hours in 7m by 5m dorm hallway. The main features of author's approach are its distributed properties, the lack of any heavy infrastructure, its unobtrusive exploitation of multi-sensory background phenomena, and in active mode, making the sound signal between nodes unobtrusive by mimicking the natural sounds.en_US
dc.description.statementofresponsibilityby Daniel Sang Kim.en_US
dc.format.extent116 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleSensor network localization based on natural phenomenaen_US
dc.typeThesisen_US
dc.description.degreeM.Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc216881152en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record