dc.contributor.advisor | Vivek K. Goyal. | en_US |
dc.contributor.author | Pai, Ruby J | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2008-05-19T16:02:11Z | |
dc.date.available | 2008-05-19T16:02:11Z | |
dc.date.copyright | 2006 | en_US |
dc.date.issued | 2006 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/41623 | |
dc.description | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006. | en_US |
dc.description | Includes bibliographical references (p. 67-68). | en_US |
dc.description.abstract | At high rate, a sparse signal is optimally encoded through an adaptive strategy that finds and encodes the signal's representation in the sparsity-inducing basis. This thesis examines how much the distortion rate (D(R)) performance of a nonadaptive encoder, one that is not allowed to explicitly specify the sparsity pattern, can approach that of an adaptive encoder. Two methods are studied: first, optimizing the number of nonadaptive measurements that must be encoded and second, using a binned quantization strategy. Both methods are applicable to a setting in which the decoder knows the sparsity basis and the sparsity level. Through small problem size simulations, it is shown that a considerable performance gain can be achieved and that the number of measurements controls a tradeoff between decoding complexity and achievable D(R). | en_US |
dc.description.statementofresponsibility | by Ruby J. Pai. | en_US |
dc.format.extent | 68 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Nonadaptive lossy encoding of sparse signals | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M.Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 216884029 | en_US |