MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ensemble : fluency and embodiment for robots acting with humans

Author(s)
Hoffman, Guy
Thumbnail
DownloadFull printable version (18.14Mb)
Alternative title
Fluency and embodiment for robots acting with humans
Other Contributors
Massachusetts Institute of Technology. Dept. of Architecture. Program in Media Arts and Sciences.
Advisor
Cynthia Breazeal.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis is concerned with the notion of fluency in human-robot interaction (HRI), exploring cognitive mechanisms for robotic agents that would enable them to overcome the stop-and-go rigidity present in much of HRI to date. We define fluency as the ethereal yet manifest quality existent when two agents perform together at high level of coordination and adaptation, in particular when they are well-accustomed to the task and to each other. Based on mounting psychological and neurological evidence, we argue that one of the keys to this goal is the adaptation of an embodied approach to robot cognition. We show how central ideas from this psychological school are applicable to robot cognition and present a cognitive architecture making use of perceptual symbols, simulation, and perception-action networks. In addition, we demonstrate that anticipation of perceptual input, and in particular of the actions of others, are an important ingredient of fluent joint action. To that end, we show results from an experiment studying the effects of anticipatory action on fluency and teamwork, and use these results to suggest benchmark metrics for fluency. We also show the relationship between anticipatory action and a simulator approach to perception, through a comparative human subject study of an implemented cognitive architecture on the robot AUR, a robotic desk lamp, designed for this thesis. A result of this work is modeling the effect of practice on human-robot joint action, arguing that mechanisms that govern the passage of cognitive capabilities from a deliberate yet slower system to a faster, sub-intentional, and more rigid one, are crucial to fluent joint action in well-rehearsed ensembles. Theatrical acting theory serves as an inspiration for this work, as we argue that lessons from acting method can be applied to human-robot interaction.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2007.
 
Includes bibliographical references (p. 225-234).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/41705
Department
Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Publisher
Massachusetts Institute of Technology
Keywords
Architecture. Program in Media Arts and Sciences.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.