MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A nonsmooth exclusion test for finding all solutions of nonlinear equations

Author(s)
Kumar, Vinay, S.M. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (3.658Mb)
Other Contributors
Massachusetts Institute of Technology. Computation for Design and Optimization Program.
Advisor
Paul I. Barton.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A new approach is proposed for finding all solutions of systems of nonlinear equations with bound constraints. The zero finding problem is converted to a global optimization problem whose global minima with zero objective value, if any, correspond to all solutions of the initial problem. A branch-and-bound algorithm is used with McCormick's nonsmooth convex relaxations to generate lower bounds. An inclusion relation between the solution set of the relaxed problem and that of the original non-convex problem is established which motivates a method to generate automatically reasonably close starting points for a local Newton-type method. A damped-Newton method with natural level functions employing the restrictive monotonicity test is employed to find solutions robustly and rapidly. Due to the special structure of the objective function, the solution of the convex lower bounding problem yields a nonsmooth root exclusion test which is found to perform better than earlier interval based exclusion tests. The Krawczyk operator based root inclusion and exclusion tests are also embedded in the proposed algorithm to refine the variable bounds for efficient fathoming of the search space. The performance of the algorithm on a variety of test problems from the literature is presented and for most of them the first solution is found at the first iteration of the algorithm due to the good starting point generation.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2007.
 
Includes bibliographical references (p. 93-94).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/41732
Department
Massachusetts Institute of Technology. Computation for Design and Optimization Program
Publisher
Massachusetts Institute of Technology
Keywords
Computation for Design and Optimization Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.